Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Практикум по теории вероятностей

Научись решать в считанные дни!



1.2.2. Совместные и несовместные события.
Противоположные события. Полная группа событий


События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий  является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой наверху:
  – в результате броска монеты выпадет орёл;
 – в результате этого же броска выпадет решка.

Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными.

Противоположные события легко формулируются из соображений элементарной логики:
 – в результате броска игрального кубика выпадет 5 очков;
 – в результате этого же броска выпадет число очков, отличное от пяти.

Либо 5, либо не 5, т.е. данные события несовместны и противоположны.

Аналогично:
 – из колоды будет извлечена карта трефовой масти, либо:
 – извлечена пика, черва или бубна.
Множество несовместных событий образуют полную группу, если в результате отдельно взятого испытания обязательно появится одно и только одно из этих событий. Очевидно, что любая пара противоположных событий, например,  и  (выпадение / невыпадение «пятёрки») образует полную группу. Но, разумеется, полную группу могут образовывать не только противоположные события:
 – в результате броска игрального кубика выпадет 1 очко;
 – … 2 очка;
 – … 3 очка;
 – … 4 очка;
 – … 5 очков;
 – … 6 очков.

События  несовместны (поскольку появление какой-либо грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания обязательно появится одно из этих шести событий).

И из этих двух примеров вытекает ещё одно важное понятие, которое нам потребуется в дальнейшем – это элементарность исхода (события). Если совсем просто, то элементарное событие нельзя «разложить на другие события». Например, события  элементарны, но событие  не является таковым, так как подразумевает выпадение 1, 2, 3, 4 или 6 очков (включает в себя 5 элементарных исходов).

В примере с картами события  (извлечение трефы, пики, червы или бубны соответственно) несовместны и образуют полную группу, но они неэлементарны. Если считать, что в колоде 36 карт, то каждое из перечисленных выше событий включает в себя 9 элементарных исходов. Аналогично – события  (извлечение шестёрки, семёрки, …, короля, туза) несовместны, образуют полную группу и неэлементарны (каждое включает в себя 4 исхода).

Таким образом, элементарным исходом здесь считается лишь извлечение какой-то конкретной карты, и 36 несовместных элементарных исходов тоже образуют полную группу событий.

И коротко о событиях совместных. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого. Например:
 – из колоды карт будет извлечена трефа;
 – из колоды карт будет извлечена семёрка.
– данные события совместны, т.к. при излечении семёрки треф одновременно имеют место оба события.

Понятие совместности охватывает и бОльшее количество событий:
 – завтра в 12.00 будет дождь;
 – завтра в 12.00 будет гроза;
 – завтра в 12.00 будет солнце.

Ситуация, конечно, редкая, но совместное появление всех трёх событий, не исключено. Следует отметить, что перечисленные события совместны и попарно.

1.2.3. Сложение и умножение событий

1.2.1. Виды событий

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти после Оглавления.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин



  © mathprofi.ru - mathter.pro, 2010-2024, сделано в Блокноте.