Ваш репетитор, справочник и друг! Практикум по теории вероятностей Научись решать в считанные дни! |
1.3.1. Перестановки, сочетания и размещения без повторенийНачнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов, либо которые считаются таковыми по смыслу задачи. Представьте, что перед вами на столе слева направо выложены: Вопрос первый: сколькими способами их можно переставить? Одна комбинация уже записана выше и с остальными проблем не возникает: яблоко / банан / груша Итого: 6 комбинаций или 6 перестановок. Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт! Пожалуйста, откройте Приложение Основные формулы комбинаторики и в пункте № 2 найдите формулу количества перестановок. Никаких мучений – 3 объекта можно переставить: способами. Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт? а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний (см. тот же п.2 Приложения): Запись следует читать и понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?». б) Перечислим все возможные сочетания двух фруктов: яблоко и груша; Количество комбинаций легко проверить по той же формуле: Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?». в) И, наконец, три фрукта можно выбрать единственным способом: Следует отметить, что формула количества сочетаний сохраняет смысл и для пустой выборки: г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта (любые) или все 3 фрукта: …внимательные читатели уже кое о чём догадались. Но о смысле знака «плюс» позже. И для ответа на третий вопрос мне требуется два добровольца…, ну что же, раз никто не хочет, тогда буду вызывать к доске =) Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе? Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново: яблоко и груша; Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов: И такая перестановка возможна для каждой пары фруктов. В данном случае работает формула количества размещений: Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждой возможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей. Пожалуйста, ещё раз внимательно перечитайте пункт № 2 Приложения Основные формулы комбинаторики и постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простых случаях легко пересчитать все возможные комбинации вручную, но чаще всего это становится трудноподъёмной задачей, именно поэтому и нужно понимать смысл формул. Теперь остановимся на каждой комбинации подробнее: Полную и свежую версию этой книги в pdf-формате, Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно! С наилучшими пожеланиями, Александр Емелин |
|