Ваш репетитор, справочник и друг! Практикум по теории вероятностей Научись решать в считанные дни! |
1.5. Геометрическое определение вероятностиКлассическое определение вероятности оказывается эффективным для решения целого спектра задач, но с другой стороны, обладает и рядом ограничений. Одним из таких ограничений является тот факт, что оно неприменимо к испытаниям с бесконечным количеством исходов. Простейший пример: На отрезок наудачу бросается точка. Какова вероятность того, что она попадёт в промежуток ? Вероятность наступления некоторого события в испытании равна отношению , где – геометрическая мера, выражающая общее число всех возможных и равновозможных исходов данного испытания, а – мера, выражающая количество благоприятствующих событию исходов. На практике в качестве такой геометрической меры чаще всего выступает длина или площадь, реже – объём. Примечание: – метрические единицы: метры, сантиметры или какие-то др. Слишком просто? Как и в случае с классическим определением, это обманчивое впечатление. Обстоятельно и добросовестно разбираемся в практических примерах: Задача 28 Решение: «чего тут сложного? Вероятность равна ». Это автоматическая ошибка, которую допускают по небрежности. Да, совершенно верно – длина обрезка составит не менее 80 см, если от ленты отрезать меньше 20 сантиметров. Но здесь часто забывают, что искомый разрез можно сделать как с одного конца ленты, так и с другого: Поскольку ленту можно разрезать где угодно, то общему числу исходов соответствует её длина: Благоприятствующим исходам соответствуют участки, отмеченные красным цветом, и их суммарная длина равна: Ответ: 0,4 Какой можно сделать вывод? Даже если задача кажется вам очень простой, НЕ СПЕШИТЕ При оформлении задач следует обязательно указывать размерность (единицы, метры, квадратные единицы, квадратные метры и т.д.). Кстати, обратите внимание, что на финальном этапе вычислений геометрическая мера сокращается. Так в рассмотренном примере, сократились метры: Следующая задача для самостоятельного решения: Задача 29 Значительно чаще встречаются примеры, в которых фигурируют площади: Вспоминаем геометрию: вписанный круг лежит внутри треугольника и касается его сторон в трёх точках. …Представили? Отлично! Решение: поскольку точка ставится в треугольник, а круг лежит внутри, то общему числу исходов соответствует площадь треугольника, а множеству благоприятствующих исходов – площадь вписанного круга. Осталось вспомнить или отыскать (проще всего в Сети) школьные геометрические формулы. Если даны длины сторон треугольника, то его площадь удобно найти по формуле Герона: Сначала вычислим полупериметр треугольника: , а затем его площадь: Площадь круга найдём по известной формуле . Если круг вписан в треугольник, то его радиус можно рассчитать по формуле , этого я не вообще не знал – только что нашёл в Интернете. Итак, площадь вписанного круга: По геометрическому определению: Ответ: Более простой пример для самостоятельного решения: Задача 31 Следует отметить, что в этой задаче треугольник вовсе не обязан как-то касаться окружности, он просто расположен внутри круга и всё. Будьте внимательны! А теперь рассмотрим широко известную задачу о встрече: Задача 32 Решение: сначала выясним длительность временнОго промежутка, на котором могут пересечься автомобили: это 90 минут (коль скоро, от 19.00 до 20.30). Изобразим прямоугольную систему координат, где в подходящем масштабе построим квадрат размером 90 на 90 единиц: Далее по оси от начала координат откладываем время погрузки одного автомобиля (зелёная линия), а по оси – время погрузки другого автомобиля (красная линия) (можно наоборот, это не повлияет на решение). Теперь из правого конца зелёного отрезка и из верхнего конца красного отрезка под углом 45 градусов проводим две линии внутри квадрата (малиновые отрезки). Множеству благоприятствующих исходов (когда автомобили «пересекутся» во времени) соответствует площадь заштрихованной фигуры. В принципе, её можно вычислить «на пальцах», но технически проще использовать окольный путь, а именно, вычислить площади двух прямоугольных треугольников. Используем формулу: В нашей задаче: верхний треугольник имеет катеты длиной по 80 единиц, нижний треугольник – по 75 единиц. Обратите внимание, что в общем случае эти треугольники не равны. Таким образом, суммарная площадь треугольников составляет: И бесхитростный заключительный манёвр: из площади квадрата вычитаем площади треугольников, получая тем самым благоприятствующую площадь: По геометрическому определению: Ответ: Подробное объяснение этого способа решения можно найти, например, в учебном пособии В.Е. Гмурмана, я же остановился лишь на техническом алгоритме, дабы не тратить ваше драгоценное время. И если в разобранной задаче встреча явно нежелательна, то в следующей, скорее, наоборот. Романтичный эпизод для самостоятельного изучения: Задача 33 Не нужно печалиться по поводу пункта «бэ» – любовь приходит и уходит, а кушать хочется всегда! =) Решение, чертёж и ответ в конце книги. Оставшиеся примеры параграфа посвящены не менее распространённому типу задач, где фигурируют неравенства. Для начала разогревающий пример: Задача 34 Решение: изобразим на чертеже искомый квадрат и прямую : Общему множеству исходов соответствует площадь квадрата Прямая делит квадрат на треугольник и трапецию. Как определить фигуру, которая удовлетворяет условию ? Вспоминаем линейные неравенства: нужно взять любую точку, не принадлежащую прямой , например, точку и подставить её координаты в неравенство: Получено верное неравенство, значит, множеству благоприятствующих исходов соответствует площадь трапеции. Рассчитаем данную площадь как сумму площадей прямоугольного треугольника и прямоугольника (разделены на чертеже пунктиром): По геометрическому определению: Ответ: …аналитическую геометрию немного вспомнили, теперь на очереди математический анализ, ибо неравенства бывают не только линейными: Задача 35 Схема решения уже знакома: коль скоро загадываются 2 произвольных числа от нуля до пяти (они могут быть и иррациональными), то общему количеству исходов соответствует площадь квадрата На отрезке прямая расположена не ниже гиперболы , по соответствующей формуле: Ответ: Аналогичный пример для самостоятельного решения: Задача 36 В заключение следует отметить, что геометрическое определение вероятности тоже обладает своими недостатками. Один из них заключается в своеобразном парадоксе, давайте вспомним самый первый пример с отрезком , на который случайным образом падает точка. Возможно ли, что точка попадёт, например, на самый край отрезка? Да, такое событие возможно, но по геометрическому определению, его вероятность равна нулю! И то же самое можно сказать о любой точке отрезка! Дело в том, что с позиций геометрии размеры отдельно взятой точки равны нулю, и поэтому геометрическое определение вероятности здесь не срабатывает. 1.6.1. Теорема сложения вероятностей несовместных событий 1.4. Классическое определение вероятности Полную и свежую версию этой книги в pdf-формате, Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно! С наилучшими пожеланиями, Александр Емелин |
|