Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Аналитическая геометрия для «чайников»



2.2.3. Как найти направляющий вектор
по общему уравнению прямой?


Очень просто:

Если прямая задана общим уравнением , то вектор  является направляющим вектором данной прямой.

Примеры нахождения направляющих векторов прямых:

Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить: так, уравнение  задаёт прямую, которая параллельна оси  и координаты полученного направляющего вектора  удобно разделить на –2, получая в точности базисный вектор  в качестве направляющего вектора. Аналогично, уравнение  задаёт прямую, параллельную оси , и, разделив координаты вектора  на 5, получаем направляющий вектор .

Читателям с низким уровнем подготовки рекомендую постоянно выполнять чертежи, чтобы лучше понимать мои объяснения!

Теперь выполним проверку Задачи 61. Решение уехало вверх, поэтому напоминаю, что в ней мы составили уравнение прямой  по точке  и направляющему вектору . Проверка состоит в двух действиях:

Во-первых, по уравнению прямой  восстанавливаем её направляющий вектор:  – всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это несложно заметить по пропорциональности соответствующих координат).

Во-вторых, координаты точки  должны удовлетворять уравнению . Подставляем их в уравнение:

 – получено верное равенство, чему мы очень рады.

Вывод: задание выполнено правильно.

Задача 62

Составить уравнение прямой по точке  и направляющему вектору

Это задача для самостоятельного решения. И проверка, проверка, проверка!

Старайтесь всегда (если это возможно) выполнять проверку на черновике.
Глупо допускать ошибки там, где их 100%-но можно избежать!

В том случае, если одна из координат направляющего вектора равна нулю, поступают очень просто:

Задача 63

Составить уравнение прямой по точке  и направляющему вектору .

Решение: формула  не годится, так как знаменатель правой части равен нулю. Но выход прост! Используя свойства пропорции, перепишем уравнение в виде , и дальнейшее покатилось по глубокой колее:

переставим части местами:

Ответ:

Проверка:

1) Восстановим направляющий вектор найденной прямой :
 – полученный вектор коллинеарен исходному направляющему вектору .

2) Подставим координаты точки  в уравнение :

 – получено верное равенство, значит, точка  удовлетворяет уравнению.

Вывод: задание выполнено правильно

Возникает вопрос: зачем маяться с формулой , если существует универсальная версия , которая сработает в любом случае?

Причин две. Во-первых, формула в виде дроби  гораздо лучше запоминается. А во-вторых, недостаток универсальной формулы  состоит в том, что здесь повышается риск запутаться при подстановке координат.

Задача 64

Составить уравнение прямой по точке  и направляющему вектору , выполнить проверку.

Это задача для самостоятельного решения. Кстати, проверку можно выполнять и графически – решили задачу и изобразили всё на чертеже. Правда, такой способ бывает неудобен или трудновыполнИм, и поэтому всё-таки «рулит» аналитика.

Вернёмся к вездесущим двум точкам:

2.2.4. Как составить уравнение прямой по двум точкам?

2.2.2. Как составить уравнение прямой по точке и направляющему вектору?

| Оглавление |

Автор: Aлeксaндр Eмeлин



  © mathprofi.ru - mathter.pro, 2010-2024, сделано в Блокноте.