2.2.7. Функция распределения случайной величины
Стандартное обозначение: 
И для дискретной, и для непрерывной случайной величины она определяется одинаково:
Построим функцию распределения для нашей подопытной игры:

Начинаем разбираться. Чему, например, равно значение ? Это вероятность того, что выигрыш будет меньше, чем –20. И это невозможное событие: . Совершенно понятно, что и для всех «икс» из интервала , а также для . Почему? По определению функции распределения:
– вы согласны? Функция
возвращает вероятность того,
что в точке выигрыш
будет СТРОГО МЕНЬШЕ «минус» пяти.
Таким образом: , если .
На интервале функция , поскольку левее
любой точки этого интервала есть только одно значение случайной величины, которое появляется с вероятностью 0,5. Кроме того,
сюда же следует отнести точку ,
так как:
– очень хорошо осознайте этот
момент!
Таким образом, если , то 
Далее рассматриваем промежуток . СТРОГО ЛЕВЕЕ любой точки этого промежутка находятся два выигрыша , поэтому:

И, наконец, если , то , ибо все значения
случайной величины лежат СТРОГО левее
любой точки интервала 
Заметим, кстати, важную особенность: коль скоро функция характеризует вероятность, то
она может принимать значения лишь из промежутка – и никакие другие!
Итак, функция распределения вероятностей ДСВ является кусочной и, как многие знают, в таких случаях принято использовать
фигурные скобки:

График данной функции имеет разрывный «ступенчатый» вид:

Причём, функция или её
график однозначно определяют сам закон распределения: в точке высота «ступеньки» (разрыв) составляет (следим по графику), в точке «скачок» разрыва равен и, наконец, в точке он равен в точности .
Таким образом, функция распределения вероятностей – это ещё один способ ЗАДАТЬ случайную величину. И этот способ
особо важен для непрерывной случайной величины – по той причине, что её невозможно описать таблицей (ввиду бесконечного и
несчётного количества принимаемых значений). Однако, всему своё время, и НСВ – тоже.
Освоим технические моменты решения типовой задачи:
Задача 93
Построить функцию распределения случайной величины 

Найти вероятности того, что случайная величина примет значение из следующих промежутков:

…, пожалуй, достаточно.
Решение: На практике удобно использовать формальный алгоритм построения функции распределения:
Сначала берём первое значение и составляем нестрогое неравенство . На этом промежутке .
На промежутке (между
и ):

На промежутке (между
и ):

На промежутке (между
и ):

И, наконец, если строго
больше самого последнего значения , то:

Легко заметить, что с увеличением «икс» идёт накопление (суммирование) вероятностей, и поэтому функцию иногда называют интегральной функцией распределения. В
практических задачах проведённые выше действия обычно выполняют устно, а результат сразу записывают под единую скобку:

Выполним чертёж:

и проконтролируем правильность решения с помощью «скачков» графика: в точке «скачок» равен , в точке составляет , в точке равен , и, наконец, в точке – .
При выполнении чертежа от руки оптимален следующий масштаб:
горизонтальная ось: 1 ед. = 2 или 1 тетрадная клетка;
вертикальная ось: 0,1 = 1 тетрадная клетка.
На левых концах ступенек (кроме нижнего луча) можно ставить выколотые точки – дело вкуса. Левый нижний луч следует прочертить жирно
(чтобы он не сливался с координатной осью) и до конца оси! Правая верхняя линия не должна заканчиваться раньше
острия оси! Такие оплошности могут говорить о непонимании функции распределения, а это, как вы понимаете, скверно. То было ручное
построение. Ну а о том, как строить такие красивые графики в Экселе можно узнать в этом ролике на Ютубе, к слову, полигон (многоугольник) распределения строится ещё проще.
Переходим ко второй части задания, её коротко можно сформулировать так:
2.2.8. Вероятность попадания в промежуток
2.2.6. Многоугольник распределения
Полную и свежую версию этой книги в pdf-формате, а также курсы по другим темам можно найти после Оглавления.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
|