Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Аналитическая геометрия для «чайников»



1.5.5. Как найти единичный вектор?


Единичный вектор – это вектор, длина которого в ортонормированном базисе равна единице. Таковыми являются сами координатные векторы  и ,  и противоположно направленные им векторы, например:

То, что их длина равна единице, элементарно видно не только по чертежам, но и по формулам .

А теперь рассмотрим произвольный вектор  либо  и поставим задачу найти единичный вектор , коллинеарный исходному. Таких векторов будет два. Чтобы найти сонаправленный единичный вектор нужно каждую координату вектора  разделить на его длину:
 либо ,
или, что то же самое – умножить каждую координату вектора   на . То есть, деление – это частный случай умножения (осознаём и привыкаем). Противоположно направленный единичный вектор очевиден:
 либо

Задача 10

Найти единичные векторы, коллинеарные векторам а) , б) . Выполнить проверку.

Решение: а) вычислим длину вектора  и найдём сонаправленный единичный вектор:
, от иррациональности в знаменателе (корня) тут обычно не избавляются. Проверка состоит в нахождении длины полученного вектора:
, что и требовалось проверить.
Второй вектор очевиден: , как очевидна и его длина .

Ответ:

Потребность найти единичный вектор возникает не только в геометрических задачах, и поэтому обязательно прорешайте пункт б) самостоятельно.

1.5.6. Деление отрезка в данном отношении

1.5.4. Действия с векторами в координатах

| Оглавление |

Автор: Aлeксaндр Eмeлин



  © mathprofi.ru - mathter.pro, 2010-2024, сделано в Блокноте.