1.5.5. Как найти единичный вектор?
Единичный вектор – это вектор, длина которого в ортонормированном базисе равна единице. Таковыми являются сами
координатные векторы и , и противоположно направленные им векторы, например:

То, что их длина равна единице, элементарно видно не только по чертежам, но и по формулам .
А теперь рассмотрим произвольный вектор либо
и поставим задачу найти
единичный вектор , коллинеарный исходному. Таких векторов будет два. Чтобы найти сонаправленный единичный вектор нужно каждую координату вектора разделить на его длину:
либо ,
или, что то же самое – умножить каждую координату вектора на . То
есть, деление – это частный случай умножения (осознаём и привыкаем). Противоположно направленный единичный
вектор очевиден:
либо 
Задача 10
Найти единичные векторы, коллинеарные векторам а) , б) . Выполнить проверку.
Решение: а) вычислим длину вектора и найдём
сонаправленный единичный вектор:
, от иррациональности в знаменателе (корня) тут
обычно не избавляются. Проверка состоит в нахождении длины полученного вектора:
, что и требовалось проверить.
Второй вектор очевиден: , как очевидна и его
длина .
Ответ: 
Потребность найти единичный вектор возникает не только в геометрических задачах, и поэтому обязательно прорешайте пункт б)
самостоятельно.
1.5.6. Деление отрезка в данном отношении
1.5.4. Действия с векторами в координатах
| Оглавление |
Автор: Aлeксaндр Eмeлин
|