5.2.1. Как составить уравнение плоскости
по точке и двум неколлинеарным векторам?
Конструировать уравнение будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность.
Казалось бы, плоскость можно однозначно определить с помощью двух неколлинеарных векторов. Но нет – векторы свободны и бродят по всему пространству, поэтому ещё нужна фиксированная точка:
Уравнение плоскости, которая проходит через точку параллельно неколлинеарным векторам , выражается формулой:
! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.
Принципиально ситуация выглядит так:
Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (они будут «вертеться» вокруг точки и зададут целый «пучок» плоскостей).
Задача 130
Составить уравнение плоскости по точке и неколлинеарным векторам .
Решение: искомое уравнение составим по формуле:
Определитель удобнее всего раскрыть по первому столбцу:
Раскрываем определители второго порядка:
На первом месте у нас нарисовался знак «минус», и хорошим тоном считается его убрать (точно так же, как и у общего уравнения «плоской» прямой).
Меняем у каждого слагаемого знак и проводим дальнейшие упрощения:
, сократить здесь ничего нельзя, поэтому:
Ответ:
Как проверить задание? Для проверки пока не хватает информации, но мы обязательно выполним её чуть позже. Решаем самостоятельно:
Задача 131
Составить уравнение плоскости по векторам и принадлежащей ей точке .
Кстати, если векторы коллинеарны, то и на этот случай есть корректный ответ ;)
5.2.2. Как составить уравнение плоскости по трём точкам?
5.1.5. Уравнение плоскости в отрезках
| Оглавление |
Автор: Aлeксaндр Eмeлин
|