Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Аналитическая геометрия для «чайников»



5.5.5. Пересекающиеся прямые в пространстве


Пересекающиеся прямые пространства обязательно лежат в одной плоскости, причём их направляющие векторы неколлинеарны:

Первая мысль – всеми силами навалиться на точку пересечения .

И тут сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Собственно:

Задача 156

Найти точку пересечения прямых

Решение: Перепишем уравнения прямых в параметрической форме:

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых  принадлежит прямой , поэтому её координаты  удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно, существует значение , такое, что:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными, которую опять же решим «школьным» способом. Из 1-го уравнения выразим  – подставим в два нижних уравнения:

В результате получилась совместная система, из которой следует, что . Тогда:

Подставим найденное значение параметра  в уравнения координат точки:
, и для проверки подставим значение  в уравнения:

Ответ:

Теперь рассмотрим особый случай пересечения прямых:

5.5.6. Как найти прямую, перпендикулярную данной?

5.5.4. Как найти расстояние между скрещивающимися прямыми?

| Оглавление |

Автор: Aлeксaндр Eмeлин



  © mathprofi.ru - mathter.pro, 2010-2024, сделано в Блокноте.