Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Аналитическая геометрия для «чайников»



5.5.6. Как найти прямую, перпендикулярную данной?


Обращаю внимание, что для скрещивающихся прямых таких прямых можно провести бесконечно много, а вот для пересекающихся – задача имеет единственное решение:

Задача 157

а) Составить уравнения прямой, проходящей через точку  перпендикулярно прямой  (прямые пересекаются).

б) Найти расстояние от точки  до прямой ,   в) симметричную точку .

а)  Решение: обозначим неизвестную прямую через :

И начинаем раскручивать задачу: что нам известно об этой прямой?

Известна её точка . Неплохо бы найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор . Но мы не знаем точку . Вот ей-то и займёмся

План есть, и мы счастливы:

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

И вот уже в третий раз используем тот же самый фокус. Рассмотрим точку  с пока ещё неизвестными координатами. Поскольку точка , то её координаты  удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра :
, или в строчку:  

Тогда:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы  – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, находим точку:
 

И направляющий вектор: .

4) Уравнения прямой  составим по точке  и вектору… избавимся-ка мы от дробей и возьмём направляющий вектор :

Ответ:

Но, разумеется, тут можно было взять и вектор :

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки  в уравнения каждой прямой, они должны «подойти» и там и там.

Об этих действиях говорилось много, поэтому я выполнил проверку на черновике.

5.5.7. Как найти расстояние от точки до прямой?

5.5.5. Пересекающиеся прямые в пространстве

| Оглавление |

Автор: Aлeксaндр Eмeлин



  © mathprofi.ru - mathter.pro, 2010-2024, сделано в Блокноте.