5.4.1. Канонические уравнения прямой
Для лёгкого понимания темы целесообразно освоить или вспомнить уравнение «плоской» прямой, поскольку будет очень много похожих вещей. Но будут и отличия, на одно из которых вы уже наверняка обратили внимание. Я выделил прописной буквой окончание слова «уравнениЯ», подчеркивая, что оно находится ВО МНОЖЕСТВЕННОМ ЧИСЛЕ. И это не случайно: особенность пространственной прямой состоит в том, что она задаётся не одним уравнением, а некоторым множеством уравнений.
Теперь о совпадениях: пространственную прямую точно так же обозначают строчными латинскими буквами , как вариант, с подстрочными индексами: . Либо двумя точками, принадлежащими данной прямой: .
И точно так же – её можно задать несколькими способами. Начнём с канонов, точки и направляющего вектора:
Если известна некоторая точка пространства , принадлежащая прямой, и направляющий вектор данной прямой, то канонические уравнения этой прямой выражаются формулами:

Приведённая запись предполагает, что координаты направляющего вектора не равны нулю. Что делать, если одна или две координаты нулевые, мы рассмотрим чуть позже.
Задача 143
Составить канонические уравнения прямой по точке и направляющему вектору 
Решение: по соответствующим формулам:

Ответ: 
Что следует отметить в этом очень простом примере? Во-первых, полученные уравнения НЕ НАДО сокращать на единицу:

Сократить, точнее, можно, но это режет глаз и создаёт неудобства в ходе решения задач.
А во-вторых, проверка, которая очень легко (и быстро!) выполняется устно:
Сначала смотрим на знаменатели уравнений и сверяемся – правильно ли там записаны координаты направляющего вектора ? Нет, не подумайте, у нас не урок в детском садике «Тормозок», эта мера позволит исключить ошибку по невнимательности. Никто не застрахован от «наваждения», или вдруг вы условие неправильно переписали?
Далее подставляем координаты точки в найденные уравнения:

– получены верные равенства, значит, координаты точки удовлетворяют нашим уравнениям, и сама точка действительно принадлежит данной прямой.
Довольно часто требуется найти какую-нибудь другую точку , принадлежащую данной прямой. Как это сделать? Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: .
Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему:

Проверим, удовлетворяет ли точка уравнениям :
– получены верные равенства, значит, точка действительно принадлежит данной прямой.
Выполним чертёж в прямоугольной системе координат:

Заодно вспомним, как правильно откладывать точки в пространстве. Строим точку :
– от начала координат в отрицательном направлении оси откладываем отрезок первой координаты (зелёный пунктир);
– вторая координата нулевая, поэтому «не уходим» с оси ни влево, ни вправо;
– в соответствие с третьей координатой отмеряем три единицы вверх (фиолетовый пунктир). Строим точку :
– отмеряем две единицы «на себя» (желтый пунктир), одну единицу вправо (синий пунктир) и две единицы вниз (коричневый пунктир). Коричневый пунктир и сама точка наложились на координатную ось, заметьте, что они находятся в нижнем полупространстве и расположены ПЕРЕД осью .
Сама прямая проходит над осью и, если меня не подводит глазомер, над осью . Не подводит, убедился аналитически. Если бы прямая проходила ЗА осью , то следовало бы стереть частичку линии сверху и снизу точки скрещивания.
У прямой бесконечно много направляющих векторов, например:
(красная стрелка). Получился в точности исходный вектор , но это чистая случайность (такую уж я выбрал точку ). Любой коллинеарный вектор, например, тоже будет направляющим вектором данной прямой (вспоминаем, как их получить)
Разберёмся с частными случаями, когда одна или две координаты направляющего вектора нулевые. Попутно продолжим тренировать пространственное воображение. Изобразите в тетради декартову систему координат . Напоминаю удобный масштаб: 2 клетки = 1 ед. – по осям и диагональ одной клетки = 1 ед. – по оси .
 Теперь я буду рассказывать о прямых, а вы их мысленно представляйте! Рассмотрим все шесть случаев:
1) Для точки и направляющего вектора канонические уравнения прямой распадаются на три отдельных уравнения:

или короче: 
Что это за прямая?
Поскольку направляющий вектор коллинеарен орту , то такая прямая будет параллельна оси , в частности, уравнения задают саму ось абсцисс. В чём смысл уравнений ? «Игрек» и «зет» ВСЕГДА (при любом «икс») равны нулю. А это ось . Кроме того, есть и другая интерпретация – ведь перед нами уравнения двух плоскостей! Уравнение задаёт координатную плоскость , а уравнение – плоскость . Смотрим на чертёж и ищем их пересечение!
Задача 144
Составить уравнения прямой по точке и вектору .
Решение и ответ в одну строчку: 
Какому условию удовлетворяет каждая точка этой прямой? «Иксовая» координата может быть любой: (на практике данное уравнение, как правило, не записывают). А вот «игрековая» и «зетовая» координата постоянны, равны конкретным числам: .
Самостоятельно осмысливаем два «родственных» случая:
2) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами .
Такие прямые будут параллельны координатной оси , в частности, уравнения ( любое) задают координатную саму ось ординат.
3) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами . Данные прямые параллельны координатной оси , а уравнения ( любое) задают саму ось аппликат.
Обкатываем вторую тройку:
4) Для точки и направляющего вектора канонические уравнения прямой распадаются на пропорцию и уравнение плоскости .
Задача 145
Составить уравнения прямой по точке и вектору .
Решение и ответ в одну строчку: 
Разберём суть полученной записи. Уравнение задаёт плоскость, причём данная плоскость будет параллельна «родной» координатной плоскости . Из пропорции легко выразить уравнение «плоской» прямой, единственное, эта прямая будет находиться не на плоскости , а на высоте .
Если высота нулевая: , то уравнения принимают вид , и вот это уже в точности наша «плоская» прямая, лежащая в плоскости .
Таким образом, рассмотренный случай задаёт прямую, параллельную координатной плоскости . Действительно, задумайтесь, ведь направляющий вектор параллелен данной плоскости, ибо «зетовая» координата равна нулю.
Аналогично – читаем, вдумываемся и представляем:
5) Прямая, заданная точкой и направляющим вектором , параллельна координатной плоскости , и её канонические уравнения выражаются формулами: . В частности, уравнения определяют прямую, лежащую в плоскости .
6) Прямая, заданная точкой и направляющим вектором , параллельна координ атной плоскости , и её канонические уравнения выражаются формулами: . В частности, уравнения определяют прямую, лежащую в плоскости .
Настала пора закусить – составляем уравнения и вникаем в их смысл:
Задача 146
Записать канонические уравнения прямой, если известна точка и направляющий вектор данной прямой:
а) ;
б) .
в) Прямая проходит через точку параллельно оси .
Это задание для самостоятельного решения, ответы в конце книги.
5.4.2. Как составить уравнения прямой по двум точкам?
5.3.7. Взаимное расположение трёх плоскостей
| Оглавление |
Автор: Aлeксaндр Eмeлин
|