Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Аналитическая геометрия для «чайников»



5.5.3. Как найти прямую, содержащую общий перпендикуляр?


в) Эта задачка посложнее будет. «Чайникам» рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить – дело в том, что по сложности эту задачу надо бы поставить последней в параграфе, но по логике изложения она должна располагаться здесь. …Впрочем, танцуйте читайте все! :)

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

Общий перпендикуляр скрещивающихся прямых – это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец:  – общий перпендикуляр прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу….

Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО. Если точка принадлежит данной прямой, то её координатам  соответствует вполне конкретное значение параметра, обозначим его через . Тогда координаты точки запишутся в виде:
, или:

Жизнь налаживается, одна неизвестная – это всё-таки не три неизвестных.

2) Аналогичные действия проведём со второй прямой. Перепишем её уравнения в параметрическом виде:

Если точка  принадлежит данной прямой, то при вполне конкретном значении  её координаты должны удовлетворять параметрическим уравнениям:
, или:

3) Запишем вектор . Ну и что, что нам не известны координаты точек – это же не мешает из координат конца вектора  вычесть соответствующие координаты начала :

4) Вектор , как и ранее найденный вектор , является направляющим вектором прямой . Таким образом, они коллинеарны, и один вектор можно линейно выразить через другой с некоторым коэффициентом пропорциональности «лямбда»:
или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера. Но так извращаться мы, конечно, не будем. Выразим из 3-го уравнения  и подставим эту «лямбду» в первые два уравнения:

Из 2-го уравнения выразим  и подставим в 1-е уравнение:
, а «лямбда» нам не потребуется.

То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения  в наши точки:
       

Сам вектор  нам не нужен, так как уже найден его коллега .

И после длинного пути всегда интересно выполнить проверку. Подставим координаты точки  в уравнения :

 –  получены верные равенства.

Подставим координаты  в уравнения :

 – получены верные равенства.

Вывод: найденные точки действительно принадлежат соответствующим прямым.

6) Заключительный аккорд: составим уравнения прямой  по точке  (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

5.5.4. Как найти расстояние между скрещивающимися прямыми?

5.5.2. Скрещивающиеся прямые

| Оглавление |



Автор: Aлeксaндр Eмeлин




  © mathprofi.ru - mathter.pro, 2010-2022, сделано в Блокноте.