Ваш репетитор, справочник и друг!

Ваш репетитор, справочник и друг!

Математическая статистика – краткий курс для начинающих



3.2.6. Среднее квадратическое отклонение


Или среднеквадратическое отклонение. Или стандартное отклонение. Это синонимы. Оно обозначается греческой буквой «сигма», и коль скоро у нас выборочная совокупность, то добавляем соответствующий подстрочный индекс:

 – выборочное среднее квадратическое отклонение.

Чем меньше стандартное отклонение (и дисперсия), тем меньше вариация – тем бОльшее количество вариант находится вблизи выборочной средней. Но у нас, как нетрудно «прикинуть на глазок», разброс довольно-таки велик – значительное количество вкладов расположено далековато от среднего значения , и поэтому стандартное отклонение  получилось немалым.

Следующая часть задачи состоит в том, чтобы корректно оценить генеральную дисперсию  и генеральное среднее квадратическое отклонение .

Не так давно я рассказал о том, что выборочная дисперсия  представляет собой смещённую оценку генеральной дисперсии. Это означает, что если мы будем проводить неоднократные выборки из той же генеральной совокупности, то полученные значения  будут систематически занижено оценивать . Обращаю ваше внимание, что это не значит, что  будет всегда меньше, чем .

И поэтому выборочную дисперсию, как намекает условие, нужно поправить:

 – исправленная выборочная дисперсия

и, соответственно:

 или 240,30 денежных единиц – исправленное среднее квадратическое отклонение.

 и  – это уже несмещённые оценки генеральной дисперсии  и генерального стандартного отклонения  соответственно.

Ввиду большого объёма выборки (100 вариант) этой поправкой можно пренебречь, но мы всё же не будем «разбрасываться» 30 «копейками».

Ответ: ; в качестве оценки соответствующих генеральных показателей принимаем  и .

Рассмотренные выше показатели (размах вариации, среднее линейное отклонение, дисперсия, стандартное отклонение) входят в группу абсолютных показателей вариации, которые обладают рядом неудобств.

Так, если в прорешанной задаче не уменьшать варианты в 1000 раз, то дисперсия получится в миллион раз больше! Да-да, не , а . И возникает естественное желание привести результаты к некому единому стандарту.

Для этого существуют показатели относительные, и самый известный из них –

3.2.7. Коэффициент вариации

3.2.5. Вычисление дисперсии по формуле

| Оглавление |




  © mathprofi.ru - mathter.pro, 2010-2022, сделано в Блокноте.