Ваш репетитор, справочник и друг! Аналитическая геометрия для «чайников» |
3.8. Приведение уравнения к каноническому видуЭта задача следовала за нами практически с самого начала главы и в заключительном параграфе мы окончательно разберёмся, как общее уравнение линии второго порядка ( не равны одновременно нулю) свести к одному из девяти канонических случаев. В предыдущих параграфах мы очень подробно отработали частный случай уравнения, когда коэффициент : Такое уравнение приводится методом выделения полного квадрата(ов) с дальнейшим применением формул , далее осуществляется поворот (опционально) на угол либо в некоторых случаях на и непременно параллельный перенос линии или системы координат. …У вас такое уравнение? Значит, вам хватит материалов предыдущих параграфов! Не такое? Значит, не хватит :) Как многие подметили, члены общего уравнения «отвечают» за параллельный перенос, и логично предположить, что ненулевое слагаемое «отвечает» за поворот (за исключением угла и кратных ему углов, при которых , и мы отделываемся лёгким испугом).Простейший пример поворота на «нехалявный» угол нам уже встречался – это неканонически расположенная «школьная» гипербола . Уравнение с ненулевым коэффициентом неприятно тем, что в общем случае его невозможно привести к каноническому виду с помощью обычных средств алгебры: переноса слагаемых, их группировки, вынесений за скобки, выделения полных квадратов и прочей школьной самодеятельности. Поэтому на помощь приходится привлекать более мощные методы решения. Рассмотрим в качестве примера уравнение . Какие будут идеи? …Да ладно с ними, с идеями, тут даже не понятно, какую линию оно задаёт. Эллипс? Гиперболу? Параболу? Что-то другое из классификации? Немного потраченного времени, и вы научитесь довольно легко находить ответы на эти вопросы, в частности, без особых проблем сможете определить,
что данное уравнение определяет эллипс с полуосями , который расположен центром в точке и повёрнут
относительного своего канонического положения на отрицательный угол, составляющий примерно : Именно поэтому и появилась задача приведения уравнения к каноническому виду – чтобы независимо от расположения линии выяснить, что это за зверь и каким нравом он обладает. 1) Осуществим параллельный перенос эллипса центром в начало координат (представляем мысленно) и повернём его на угол (против часовой стрелки). В результате получится нужное уравнение . 2) Перейдём к прямоугольной системе координат ,
которая получается путём поворота исходной системы координат на вокруг начала координат и её параллельного переноса центром в точку . Таким образом, в новой системе координат уравнение данного эллипса запишется в каноническом виде : Но стОит ли перемещать САМУ линию? Представьте, что крыша вашего дома имеет эллиптическую форму, и шаловливый Карлсон выбрал начало координат на
трубе кочегарки J. Что вы будете делать, чтобы с комфортом исследовать эллипс? Разумеется, не станете переносить крышу, а перейдёте к удобной
системе координат. То есть, система координат относительна и вторична по отношению к тому или иному объекту. Следовательно, вполне логично и правомерно тревожить именно её, а не «уникальный» эллипс, крышу дома или что-то ещё. А суть преамбулы состоит в том, что далее мы будем приводить уравнение линии 2-го порядка путём перехода к новой прямоугольной системе координат, в которой уравнение исследуемой линии примет канонический вид. Существует несколько практических методов приведения уравнения линии к каноническому виду, причём, некоторые из них являются достаточно трудными. Я постараюсь составить максимально простой конспект, доступный человеку с любым уровнем подготовки. Для этого нам потребуется ещё одно теоретическое понятие: Все линии 2-го порядка можно разделить на две большие группы: 1) центральные линии, обладающие единственным центром (точкой) симметрии (эллипс, мнимый эллипс, гипербола, пара мнимых или действительных пересекающихся прямых); 2) нецентральные линии, у которых центры симметрии отсутствуют (парабола), либо их бесконечно много (пара действительных или мнимых параллельных прямых, пара совпавших прямых). Итак, вы счастливый обладатель уравнения С чего начать? На первом шаге целесообразно выяснить, к какой группе относится линия. Для этого нужно мысленно либо на черновике составить и вычислить определитель . Если , то перед нами уравнение центральной линии, если же – то нецентральной. Для уравнения : Зачем это нужно? Чтобы выбрать наиболее выгодный способ решения. Да, конечно, ваш учебный план может и не предоставить возможность выбора, но, тем не менее, я постараюсь провести вас через дебри самой комфортной и короткой тропинкой. Для приведения уравнения центральной линии, по моему мнению, лучше всего использовать метод инвариантов. Но, к сожалению, он перестаёт работать в нецентральном случае, поэтому на помощь придётся привлечь достаточно трудоёмкий универсальный способ решения либо ортогональное преобразование квадратичной формы (но тут уже надо ориентироваться в другой теме). Сначала разберём одно, затем другое, и даже если вам нужно разделаться лишь с нецентральной линией, постарайтесь не пропускать нижеследующий параграф, поскольку вся информация взаимосвязана: 3.8.1. Приведение уравнения центральной линии. Метод инвариантов Автор: Aлeксaндр Eмeлин |
|